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wind turbine noise for subjective
evaluation purposes
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Kelley N.D., Hemphill R.R. and McKenna H.E. A
Methodology for Assessment of Wind Turbine Noise
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Cape Bridgewater Wind Farm, House 87 Bedroom, 5:30 am
22 May 2014, L FFT (1600 lines)

eq, 10 minute
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100Hz (100ms, 1Hz Burst) - Generator (Free Running Trigger) (Real)
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Can Expectations Produce Symptoms From Infrasound Associated With
Wind Turbines?

Fiona Crichton, George Dodd, Gian Schmid, Greg Gamble, and Keith J. Petrie
University of Auckland

Method

A total of 54 university students (34 women, 20 men) were
exposed to 10 min of infrasound and 10 min of sham infrasound
(no sound). Exposure sessions, which were counterbalanced, were
conducted at the Acoustic Research Centre University of Auck-
land, in a listening room designed for subjective listening exper-
iments and constructed to International Electrotechnical Commis-
sion standards (IEC 268-13). Infrasound transmitted during
exposure sessions (40dB at SHz) was created using a combination
of the Adobe® Audition software package with a Presonus®
Firepod audio interface, and a Mackie® HR 150 active studio
woofer. Participants were told they were being exposed to infra-
sound during both 10-min exposure sessions and the experimenter
was also unaware when exposure was to infrasound or to sham
infrasound.
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symptoms from wind farms gagm;n

Renzo Tonin', James Brett’ and Ben Colagiuri’

Abstract

An investigation was conducted on the effect of reported pathological symptoms of simulated infrasound produced by
wind turbines. There is ongoing debate in the scientific community concerning the cause of the negative health effects
reported by people living near wind farms, whether those effects are caused by the infrasound itself, or alternatively by a
psychogenic response (such as a nocebo effect) to a presumption that the infrasound is the cause. In this study, a
simulated wind turbine infrasound pressure waveform was generated using a custom-built headphone apparatus.
Volunteers were influenced into states of high expectancy of negative effects from infrasound, and low expectancy of
negative effects and their reactions to either infrasound or a sham noise were recorded. It was found, at least for the
short-term exposure times conducted here-in, that the simulated infrasound has no statistically significant effect on the
symptoms reported by volunteers, but the prior concern volunteers had about the effect of infrasound has a statistically
significant influence on the symptoms reported. This supports the nocebo effect hypothesis.
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Cooper Results (field measurements) Tonin Results (synthesised)
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Annexure D of ANSI/ASA S12.9-2016/Part 7 “Advanced
Signal Processing Techniques”

It has been observed (Bray, Swinbanks, Walker, et al)

that for complex low-frequency signals (those 1 __ NWevo Signal, Minimum Random G-
comprising multiple frequencies), the temporal :
relationship between the components can have a | |
Slgn/flcant influence on the,r Subjective assessment. o6L L B B
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Figure D.1 — Two signals with exact same power spectrum and (therefore) autocorrelation function



Conclusion

 Testing of wind turbine infrasound should use actual signals of wind
turbines and not a tone or a synthesised signal

* Infrasound levels attributed to wind turbine noise are less than the
threshold of audibility for constant tones and therefore should be
inaudible. Why test for infrasound only when wind turbine noise contains
frequencies in the audible spectrum? The infrasound signature obtained by
narrowband FFT analysis is the result of an analysis of transient pulses that
can be derived by modulating sounds of much higher frequency

* For testing of wind turbine noise (including infrasound?) in a more practical
sense, would be easier and realistic to simply use wave file recordings
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Issues of concern with the use of real
infrasound or simulated “infrasound”

Accurately reproducing the signal by the use of headphones or
speakers. (D-A convertor, amplifiers and speaker/headphone
response, transient response of pulsations)

“‘infrasound” applied as single tones and attributed to wind farms

Whether the synthesised signal (obtained from adding sine waves)
reproduces the actual time signal that occurs in the field.

Testing using synthesised signal and claiming the results apply to
wind farms.



Cape Bridgewater Report — House 87 inside
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Synthesis

House 87 Bedroom — 22 May 5:30 am
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Pedfications

Mackie HRS 150

Transducers Acoustic Section
Low-frequency driver Acoustic FrequencyResponse:
Drameter: 15m/381 mm 20Hzto 150 Hz +1.5dB
Sensitivity 96 dBSPL (1 W, 1M —3 dB pomts: 19Hz 250 Hz
Nominal Impedance: Mazamum SPL: 122 dB (@ 1 meter
8 ohms Residual Noise: < 8dBASPL
Voice Col Diameter: . .
4in/100 mm Power Amplifier Section
- (1] -
Power Handling ( Long Term/Program) - Rated Power Output ( 19THD at lm Hz).
= - N 950 watts rms intorated 8() load
400/ 1000 watts
_ Peak Power Qutput ( 100 Hz sme, Per RS490) -
. - - -5
FrequencyRange: 20Hzto500Hz 1050 watts
Frame: Dre Cast THD (20 Hz to 300 Hz from 1 Wto—1 dBr = 750 W)-
Magnet: Ferrnite < 0.05%( typically 0.007%4
Passive Radiators (2) Rated Load Impedance: 8 ()
Diameter: 12 in/305 mm mass-loaded Signal-to-Noise Ratio: 107 dBr (0 dBr= 750 W)

System Specifications

Crossover Type:  Linkwitz-Riley, 24 dB/octave,
variable 55Hzto 110 Hz

Balanced Differential ( XLR).
Unbalanced (RCA)

Input Impedance: 20k() (Bal) . 10k() (UnRal)

Input Type:

Input Sensitraty:  89dB SPLwith a 100mV(—17.8 dBu)

Power Bandwadth (at 750 W) :

—0.5dBat 10Hz
—3.0dBat 55kHz
Damping factor ( referenced to 8 ()):
= 1000
Turn-On delay: 34 Seconds
Coolng: Convection
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Walker
(Ref 2)

Figure 4. In-situ photo of synthesis
system loudspeakers



Walker Equalization Gain
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Figure 6. Results of synthesis system frequency response measurement



Tonin
(ref 4)

Figure 2 Complete acoustic headphones including 6mm nozzles on both ears
with attached tubing, microphone and occlusion port (located just above the
silver coloured microphone attachment).



Signal CHZ2=-1.8mV
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Tachibana
(Ref 1)

Picture 1 Loudspeaker system and
the listener’s position in the receiving
room.



Tachibana
(Ref 1)
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Experiments Undertaken

 Wave files of real and synthesised infrasound,
use for listening tests.

* Take above wave files and speed up 100 times
then listen as raw signals + with graphic
equalisation enhancements

* Use tone burst at 100 Hz and evaluate
amplitude and frequency responses



Synthesised Leq FFT and compare with original
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100 Hz 100ms burst - generator
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100 Hz 100ms burst — speaker
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100 Hz 30ms burst
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100 Hz 10ms burst
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100 Hz 3ms burst
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100 Hz 1ms burst
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One of the features which people have not fully understood is the significance of when a
repetitive impulse is regarded as a short sharp pulse repeated with gaps in between, and when
it is regarded as a set of harmonics as displayed by an FFT analyser.

| have always found it easiest to consider an FFT analyser as simply a parallel set of very narrow
band filters. They happen to be generated digitally, and have the particular feature that their
transient response is to ring at fixed amplitude for a fixed length of time, and then stop.

Consider a single sharp half-sine impulse hitting this bank of filters. It will cause every one of
the filters to "ring" at its centre frequency. So in that respect a single sharp impulse can be
considered to contain a full range of frequencies.

If one now considers a repetitive half-sine impulse of very short duration, repeated at 1 second
intervals, it preferentially excites the filters which are harmonically related to the repetition
frequency. This includes the very lowest frequency filter, the fundamental, and its immediate
harmonics, so it is correct to say that a 1Hz repetitive infrasonic component is generated. But if
the duration of the impulse is very short, there will be a wide range of higher frequency
harmonics also generated, extending out to (say) 500Hz for a 1 millisecond pulse.

The net contribution from the higher harmonics will contain much more total power than the
immediate infrasonic components, so perception will be dominated by that of a sharp, high
frequency impulse repeated at the 1Hz time intervals.

Dr M.A. Swinbanks



Signal Build-up in Room - 100Hz Constant Tone
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Signal Build-up in Room - 10ms burst reduced level
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— 100Hz (3ms, 1Hz Burst) - Generator (Real)
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Room/Speaker Response

100Hz (3ms, 1Hz Burst) - G.R.A.S 40AZ (Real)
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Speaker Testing Conclusions

Cannot accurately reproduce the infrasound signature in the
laboratory. Cannot accurately reproduce the low frequency narrow
band signature in the laboratory —due to limitation of speaker
performance and response.

Using tone burst 100 Hz signals there was still an infrasound
signature at multiples of the 1 Hz on rate, even with 80 Hz high pass
filter in the signal chain.

Could not get a Digital to Analogue convertor to give us an
appropriate audio output of the “infrasound and low frequency”
signal from 0.86Hz — noise and gain issues.

For infrasound and low frequency testing we have gone back to
using a B & K FM reel to reel tape recorder (FM Modules not Direct
Modules) to obtain full spectrum audio samples, as having an
audio/signal output flat down to 1 Hz. But via speakers still have
frequency response issues



Speaker Testing Conclusions

If restricted to just infrasound (or infrasound + low frequency sound) best
to undertake in-situ testing.

The Japanese testing of modulated wind turbine noise using a wall of

speakers has problems in creating the “’infrasound” — but they were only
testing for audible modulation.

With the phase problems, and back pressure issues for an infinite baffle, it
would seem better to use one speaker system for audio listening tests.

For audible noise, preference to use a hemi-anechoic room

If infrasound not really there, then line array speakers (mono signal or
preferably real stereo) in hemi anechoic room works well — can conduct
medical testing on audible (and inaudible) wind turbine noise — pulsation of
signal (amplitude modulation) still present.





